HITCON 2014 Taipei, Taiwan

Vulnerability, Malware and DDoS

石調龍 Robin Shih, APJ TippingPoint Solution Architect HP ESP rshih@hp.com +886-935784086

Agenda

Vulnerability Protection

Malware Detection and Communication Cut-off

DDoS

Risk Report

Q&A

Digital Vaccine[®] – Security Accuracy

RESULT: Acts as a Virtual Software Patch

Term	Definition
Vulnerability	> A security flaw in a software program
Exploit	> A program that takes advantage of a vulnerability to gain unauthorized access or block access to a network element, compute element, O/S, or application
Exploit Filter	 Written only to a specific exploit Filter developers often forced to basic filter design due to engine performance limitations

hp

Overview of the Attack

SERVER

PACKETS FROM CLIENT

Function Call 4, contains a heap-based buffer overflow in the server parameter.

Vulnerability Filter

A vulnerability filter will check:

- ✓ TCP session established to appropriate port (135)
- ✓ BIND to the appropriate RPC interface
- ✓ REQUEST the appropriate function call (opnum=4)
- ✓ Navigate to the vulnerable parameter
- ✓ Determine that an overlong servername has been supplied

Pros: High Precision, hard to evade

Cons: Requires powerful and fast filtering engine

Exploit Filter

An exploit-specific filter detects the shell code used in a particular exploit. High false negatives.

For example:

EB 19 5E 31 C9 81 E9 89 FF FF FF 81 36 80 BF 32 94 81 EE FC FF FF FF E2 F2 EB 05 E8 E2 FF FF FF 03 53 06 1F 74 57 75 95 80 BF BB 92 7F 89 5A 1A CE B1 DE 7C E1 BE 32

Pros: Simple string match, easy to design and implement, suitable for weak engines

Cons: High false negatives, filter is blind if exploit is modified

Policy Filter

Policy filter detects all BINDs to the vulnerable interface

Will detect legitimate traffic as well as attacks

Defining this traffic as unacceptable

• Spyware, Pings from the internet, etc.

Pros: Simple string match, easy to design and implement, suitable for weak engines

Cons: High false positives when used to detect exploitation of a vulnerability Example: Snort's signature for the RPC DCOM overflow

http://www.snort.org/snort-db/sid.html?sid=2192

(0Day) (Pwn2Own\Pwn4Fun) Microsoft Internet Explorer localhost Protected Mode Bypass Vulnerability

ZDI-14-270: July 30th, 2014

CVE ID

CVE-2014-1762

CVSS Score

7.5, (AV:N/AC:L/Au:N/C:P/I:P/A:P)

Affected Vendors Vulnerability Details

Microsoft

 Affected Products
 This vulnerability allows remote attackers to execute arbitrary code on vulnerable installations of Microsoft

 Internet Explorer
 Internet Explorer

 unternet Explorer
 Description

The specific flaw exists within the ability to trick the broker into loading a malicious page in a privileged context. The issue lies in the implicit trust of navigating to localhost. An attacker can leverage this vulnerability along with proxy shellcode to execute code under the context of the current user at medium integrity.

ZERO

INITIATIVE

How does HP TippingPoint deal with it?

*Source:http://xkcd.com/1354

Malware Detection and Communication Cut-off

How can a hacker control your device?

Why Does Security Intelligence Matter?

What is ThreatDV?

- **1. A combination of reputation feed and malware filters**
- 2. Malware filter package will be updated weekly, while reputation feed will be updated ~ 2 hours
- 3. Malware filters that are designed to detect post-infection traffic including:

Vulnerability Page and Parameter

ThreatDV + Reputation Stops Attacks – Use Case:

BlackPoS malware (used in Target Breach)

- 1. ThreatDV filter detects BlackPOS data exfiltration attempts using naming convention matching in FTP
- 2. Reputation provides protection using blacklisted IP address
- 3. Attack is stopped!

ThreatDV + Reputation Stops Attacks – Use Case:

ChewBacca TOR based malware example

- ThreatDV has Chewbacca specific malware filters that detects DNS queries to known Chewbacca CnC servers
- 2. Reputation detects TOR exit nodes used in this attack
- 3. Chewbacca traffic is detected by using a TOR network activity filter
- 4. Attack is stopped!

How to Evaluate the Reputation of a Device?

DVLabs Reputation Service:

Changing the Face of Reputation

ThreatDV stops Botnet-- Real Case

HP TippingPoint Reputation Feed

			Czech Rep	commu malicio midnig	inicate with a us IP in ht	
事件	·····································	目的IP	目的Port	目的區域	次數	時間
Rep-60 31.170.179.179	10.80.219.144	31.170.179.179	80	cz	1	2013/04/03 00:59:31
Rep-60 31.170.179.179	10.44.158.91	31.170.179.179	80	cz	1	2013/04/03 00:58:35
Rep-60 31.170.179.179	10.80.219.144	31.170.179.179	80	cz	1	2013/04/03 00:58:25
Rep-60 31.170.179.179	10.44.158.91	31.170.179.179	80	cz	1	2013/04/03 00:57:21
Rep-60 31.170.179.179	10.80.219.144	31.170.179.179	80	(捷克共和國	1	2013/04/03 00:57:11
Rep-60 31.170.179.179	10.44.158.91	31.170.179.179	80	cz	1	2013/04/03 00:56:19
Rep-60 31.170.179.179	10.80.219.144	31.170.179.179	80	CZ	1	2013/04/03 00:55:59
Rep-60 31.170.179.179	10.44.158.91	31.170.179.179	80	cz	1	2013/04/03 00:55:09
Rep-60 31.170.179.179	10.80.219.144	31.170.179.179	80	CZ	1	2013/04/03 00:54:49
Rep-60 31.170.179.179	10.44.158.91	31.170.179.179	80	cz	1	2013/04/03 00:53:55

Multiple inside devices

Real Case Study 1 (Stuff up the link of a manufacture)

ICMP Fragmented Packet

ICMP Fragment Flooding consumes bandwidth

We found over 10,000,000 ICMP Fragmented Packets in one hour. The packet size is 1,500Bytes. It means this

23 © Copyright 2013 HIGMR: flooding: consumes: B3Mbps bandwidth: ubject to change without notice. HP Confidential.

Trend analysis helps detecting abnormal traffic in real time

Drill Down \rightarrow We can see all attack sources

事件	事件型態	等級	來源IP	區域	來源Port	來測	目的IP 🔺	區域	目的Port	目的動作	次數
0083: ICMP: Fragmented packet	ips	Major	.19.241	TW	0	nai	202.71.100.114	MY	0	Permit	1200
0083: ICMP: Fragmented packet	ips	Major	.33.36	TW	0	nai	202.71.100.114	MY	0	Permit	1035
0083: ICMP: Fragmented packet	ips	Major	.9.73	TW	0	nai	202.71.100.114	MY	0	Permit	600
0083: ICMP: Fragmented packet	ips	Major	.9.109	TW	0	nai	202.71.100.114	MY	0	Permit	484
0083: ICMP: Fragmented packet	ips	Major	.9.73	TW	0	nai	202.71.100.114	MY	0	Permit	425
0083: ICMP: Fragmented packet	ips	Major	.9.153	TW	0	nai	202.71.100.114	MY	0	Permit	323
0083: ICMP: Fragmented packet	ips	Major	.19.241	TW	0	nai	202.157.177.39	MY	0	Permit	825
0083: ICMP: Fragmented packet	ips	Major	.33.36	TW	0	nai	202.157.177.39	MY	0	Permit	529
0083: ICMP: Fragmented packet	ips	Major	.9.153	TW	0	nai	202.157.177.39	MY	0	Permit	350
0083: ICMP: Fragmented packet	ips	Major	.9.109	TW	0	nai	202.157.177.39	MY	0	Permit	344
0083: ICMP: Fragmented packet	ips	Malar	.19.241	TW	0	nai	202.157.177.39	MY	0	Permit	1
0083: ICMP: Fragmented packet	ips	分現統計 修研加到供事件	.9.109	TW	0	nai	202.157.177.39	MY	0	Permit	1
0083: ICMP: Fragmented packet	ips	條件排除此事件	.33.36	TW	0	nai	202.157.177.39	MY	0	Permit	1
0083: ICMP: Fragmented packet	ips	加入來源IP	.9.153	TW	0	nai	202.157.177.39	MY	0	Permit	1
0083: ICMP: Fragmented packet	ips	排除來源IP	.19.241	TW	0	nai	206.16.241.29	US	0	Permit	1202
0083: ICMP: Fragmented packet	ips	加入目的IP	.33.36	TW	0	nai	206.16.241.29	US	0	Permit	978
0083: ICMP: Fragmented packet	ips	排除日的ド	.9.109	TW	0	nai	206.16.241.29	US	0	Permit	549
										7	
(Inside IP- Botnet) (Destination- Victim))	(Huge Amount	:)	

Real Case Study 2 (Brute force attack)

(17:39, Brute Force AD event burst)

Real Case Study 3 (Crash DNS Service)

Huge DNS NX Domain Query \rightarrow FW/DNS can't handle them \rightarrow Impact Web browsing

26 © Copyright 2013 F

DNS Protection Solution: Deployment Example

• 1: Probe detects abnormal NX Domain Query

DNS Protection Solution: Deployment Example

• 2: Probe sends NX Domain blocking list to TippingPoint SMS

6924: DNS: NXDOMAIN Re 2010/09/24 11:02 ~ 12 02 140 112 240 internet 來源IP數, 12:02, 134 IPs 84 56 Uniq 28 Perimeter Probe Analyzer 11:02 11:22 11:42 ■ 來源IP數 ■目的IP數 ■ 事件次數 DNS Enterprise Users IDC HP TippingPoint IPS Mobile Home HP TippingPoint SMS

DNS Protection Solution: Deployment Example

• 3: SMS updates policy to block NX Domain queries. It's not IP isolation. All normal domain queries will be

Deny NX Domain Query- 24 hours statistic

• Deny NX Domain queries- Save DNS servers

NO	Event Na	ime		Source II	•	Src Country	Destination IP	,	Hit Count	
1	NXDomii	in-Black-L	st_siptcp.sip.linkyes.com.tw.		7.107	TW	92.2	201	46.99K	
2	NXDomii	in-Black-L	st ssl.		.41	TW	92.2	201	46.8K	
3	NXDomii	in-Black-L	st ssl.		7.66	TW	92.2	201	43.67K	
4	NXDomii	in-Black-L	st bcmlbsqa1@broadcom.com.		00.199	TW	92.2	201	43.28K	
5	NXDomii	in-Black-L	st bcmlbsqa1@broadcom.com.		92.43	TW	92.2	201	42.39K	
6	NXDomii	in-Black-L	st ssl.		.113	TW	92.2	201	42.13K	
7	NXDomii	in-Black-L	st bcmlbsqa1@broadcom.com.		21.151	TW	92.2	201	41.81K	
8	NXDomii	in-Black-L	st samsungvuieventlog.vlingo.com.		26.183	TW	92.2	201	41.13K	
9	NXDomii	in-Black-L	st lipin.ctrip.cnc.ccgslb.net.		192.191	TW	5.39		32.26K	

DNS Amplify – Generate 28-40 times traffic

• Major Purpose- Consume bandwidth

DNS Amplify TOP 10 Makers- 24 hours statistic

They are not user's IPs (Spoofed IP address)-Should be hacker's target

NO	Event Name	Source IP	Src Country	Destination IP	Dest Country	Hit Count
1	13019: DNS: DNS ANY Response	21.38	TW	2.201	TW	773.46K
2	13019: DNS: DNS ANY Response	94.123.247.2	TR	92.190	TW	397.11K
3	13019: DNS: DNS ANY Response	245.116	TW	92.201	TW	353.73K
4	13019: DNS: DNS ANY Response	72.200.121.163	US	92.201	TW	299.8K
5	13019: DNS: DNS ANY Response	4.203	TW	92.201	TW	181.84K
6	13019: DNS: DNS ANY Response	8.161	TW	92.201	TW	169.3K
7	13019: DNS: DNS ANY Response	81.244	TW	92.201	TW	155K
8	13019: DNS: DNS ANY Response	244.111	TW	92.201	TW	141.08K
9	13019: DNS: DNS ANY Response	4.181	TW	92.201	TW	134.99K
10	13019: DNS: DNS ANY Response	87.210.50.215	NL	2.192	TW	134.23K

DDoS防禦案例(不當流覽網頁)-即時分析得知,立即消弭

DDoS防禦案例(SSH登入猜測)-即時分析得知,立即消弭

爭件	突增發生時間	突増次數	過去一小時	評均次數	突增率((%) 🖉] 覽突增曲線		560: 20	L: SSH: SSH 13/02/12 0	Login Attempt)6:52 ~ 07:52	
5601: SSH: SSH Login Attempt	2013/02/12 07:52:00	39463	4416		893	2	<u>></u>	0.15		0/10 07.		40К 32К
惡意攻擊來源		金 文	十對多個 進行巨量 登入猜	目標 SSH 測)		0.06		2/12 07.4 異常突り		24К у 16К О 8К ¹ 9
223.4.36.10			- FW效	能?				06:52	0	7:12	07:32 07	:52
事件	·來源IP	來源Port	來源區域	E .C	E	的Port	目的IP名種	解析 目	的區域	次數	時間	
5601: SSH: SSH Login Att	empt 223.4.36.10	55660	CN	13	9.212 2	2	Home	יד	w	39,463	2013/02/12 07:52:58	
5601: SSH: SSH Login Att	empt 223.4.36.10	49192	CN	.80.	.81 2	2	Home	יד	w	28,601	2013/02/12 07:46:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	43012	CN	.80.	.122 2	2	Home	יד	w	28,248	2013/02/12 07:47:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	52117	CN	.80.	.95 2	2	Home	יד	w	28,187	2013/02/12 07:48:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	54866	CN	.80.	.9 2	2	Home	יד	w	28,023	2013/02/12 07:45:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	49430	CN	.80.	.87 2	2	Home	滕	間發	1 04	2013/02/12 07:49:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	40159	CN	.80.	.84 2	2	Home		巨量	88	2013/02/12 07:51:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	37120	CN	.80.	.105 2	2	Home	- SSI	I登入	63	2013/02/12 07:50:25	
5601: SSH: SSH Login Att	empt 223.4.36.10	39949	CN	.13	3.130 2	2	CUS-群盟		家人	11,241	2013/02/12 07:35:57	

Vulnerability Trends

Disclosed vulnerabilities measured by NVD, 2010–2013

Disclosed vulnerabilities by severity measured by NVD, 2010–2013

h

SCADA systems increasingly targeted

SCADA submissions to the Zero Day Initiative, 2010–2013

Mobile

Mobile prevalence only continues to grow

1 Sophos Labs 2013 2 intomobile.com/2013/07/03/more-than-160-billion-apps-downloaded-2017 3 Smart Insights, Jupiter Research 2013

Mobile Security Landscape

Explosion in usage

 Cyber Monday 2013: 55.4% year over year mobile shopping increase¹.

Mobile security efforts lag behind their web counterparts

• While both suffer from the same type of vulnerabilities, mobile security not yet as disciplined.

Mobile apps are easily exploitable

•96% of attacks not particularly difficult to execute².

1 IBM Analytics 2 2012 Data Breach Investigations Report (DBIR), Verizon Business, April 2012

Global 2000 Mobile Security study

Tested more than 2000 mobile applications from 600+ companies

86% of applications failed to use simple binary hardening protections against modern-day attacks

75% of applications do not use proper encryption techniques when storing data on a mobile device

71% of vulnerabilities resided on the Web server

••••

18% of applications sent usernames and passwords over HTTP, while another 18% implemented SSL/HTTPS incorrectly

HP 2013 Cyber Risk Report

HP 2013 Cyber Risk Report

Mobile – Top 4 client side issues

Top client-side issues in native mobile applications

HP 2013 Cyber Risk Report

Mobile – Top 4 issues

行動裝置的連結認證與持續監控流程

一張表格讓IT人員掌握BYOD的使用情況

Time	Event	Hit Count	Private SourceIP	Public SourcelP	Username	Source MAC	Location
2012/5/7 21:36	1400: SMB Windows Logon Failure	152	192.168.1.222	210.100.38.101	Robin Shih	00-50-56-C0-00-01	AP-1
2012/5/7 21:44	9991: HTTPS: Google Gmail Access	2	192.168.1.33	210.100.38.101	Sandy Chen	00-50-56-DF-11-1A	AP-1
2012/5/7 21:45			192.168.2.166	210.100.38.102	Ken Yip	00-50-56-62-13-2F	AP-2
2012/5/7 21:52	2270: BitTorrent: Peer-to-Peer Communications	69	192.168.1.33	210.100.38.101	Sandy Chen	00-50-56-DF-11-1A	AP-1
2012/5/7 21:59			192.168.1.45	210.100.38.101	Richard Chou	00-50-56-00-14-B4	AP-1
2012/5/7 22:17	6545: MS-RPC: Microsoft Server Service Buffer Overflow	1	192.168.2.88	210.100.38.102	Peter White	00-50-56-77-11-54	AP-2
2012/5/7 22:22			192.168.1.77	210.100.38.101	Jeremy Lin	00-50-56-DD-30-6A	AP-1
2012/5/7 22:25 48 © Copyrigin 2013 H	5670: HTTP: SQL Injection (SELECT) ewlett-Packard Development Company, L.P. The information conf	17 ained herein is sub	192.168.2.88 ect to change without notice. F	210.100.38.102 P Confidential.	Peter White	00-50-56-77-11-54	AP-200

Thank you

